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Abstract 

The modern-day enterprise has an information system architecture that changes in response to the firm’s 
environment. To understand its evolution we model it from a network perspective as comprising of a set of nodes 
linked by dependencies. Furthermore, we classify changes to it via addition or subtraction of nodes and links. As 
changes are made to the nodes and links, the underlying architecture of the system evolves. A key question is -- can 
we control the emergence of this complex network by closely managing and monitoring a subset of nodes? We 
define this set of nodes as architectural control points.  

IT management can influence the evolution of the network, and, by extension, the evolution of the organization. 
However, given time and cost constraints, IT management can most directly influence only a few of the components 
in the network, the architectural control points. In this research, we use a simulation model to show how a network 
perspective and network analysis provides a useful abstraction for understanding architecture. This simulation is 
validated with a case study at a financial services company. We show that by following a few simple rules, 
enterprises can improve the fitness of their architecture as the network emerges and the control points shift over 
time. 
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Introduction 
Complex systems are defined as ones that are composed of interrelated subsystems, each of the latter being in 

turn hierarchic in structure until we reach some lowest level of elementary subsystem (Simon 2003). Complexity 

arises as a result of both the number of distinct elements in the system and the nature of the interconnections and 

interdependencies among those elements. Simon (Simon 2003) continues by suggesting that the natural and efficient 

approach to managing complexity is to build nearly decomposable systems based on stable subsystems. This 

approach minimizes the overall dependency between all elements in the system by isolating elements with high 

interdependency into modules and then minimizes the interdependency between those modules. If represented as a 

Design Structure Matrix (DSM) (Steward 1981), there would be more elements along the diagonal than in other 

locations. If represented as a network, such a system would contain clusters in which nodes within a cluster would 

have more links to other nodes within the cluster than to nodes in other clusters.  

Extant literature has identified many techniques to deal with complexity. Firms develop hierarchies to both buffer 

core subsystems (Thompson 1967) and differentiate, specialize and exploit local resources (Lawrence et al. 1967). 

Firms also consider products and organizational structures as complex systems consisting of both components and 
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an architecture describing their interconnectedness (Henderson et al. 1990). Under this view, successful firms 

identify their components and architectures and manage them appropriately.  

In a static world, firms could ultimately discover their entire range of organizational structure and product 

architecture options, and then select their optimal, equilibrium solution set. However, in a dynamic world the 

important design constraints and critical subsystems change over time, resulting in patterns of disruptive change in 

economies, firms, and products (Christensen et al. 1996; Henderson et al. 1990; Landes 1983). As a result, firms go 

through a process of sequential search in product design, organization, and routines adjusting their internal processes 

to a changing external environment  (Cyert et al. 1963; Nelson et al. 1982; Simon 2003). Such an evolutionary, 

emergent process modifies the pattern of interdependencies we’ve previously described. 

We define architecture as the pattern of connections between components and observe economic, organizational, 

product, and service architectures. Firms influence the emergence of these architectures through managerial action; 

however, no manager (or firm) has enough power to control any but the smallest architecture. As more stakeholders 

get involved in a system, the influence of any single actor is reduced. Moreover, within any of these architectures, 

some components are more important to the evolution of the rest of the architecture than others. Therefore, 

managers faced with a limited ability to control need to be aware of the important components within architectures 

and the stakeholders that control them. 

We call these important components the architectural control points (ACPs). In this paper we develop the concept 

of ACPs using the context of information systems, provide a method to identify them, and show how one can control 

architectural evolution by using architectural principles. 

Architecture 
There are multiple perspectives on what constitutes IS architecture (Ross 2003). Architecture has been viewed 

strategically (Henderson et al. 1993; McKay et al. 1989; Morris et al. 1993; Ross 2003; Sauer et al. 2002; West et al. 

2000), organizationally (Byrd et al. 2000; Duncan 1995; Iyer et al. 2004; Richardson et al. 1990; Weill et al. 1998), 

and technologically (Larman 2005; Malone et al. 1994; Messerschmitt et al. 2003; Nezlek et al. 1999; Parnas 1972). 

Previous studies have summarized that an IS architecture includes a group of shared, tangible IT resources (i.e., 

hardware, software, data, training, management, etc.) that provide a foundation to enable present and future business 

applications (Duncan 1995; Kayworth et al. 2001; McKay et al. 1989; Weill et al. 1998). Architecture, as 

implemented through its IT infrastructure, should be flexible, reliable, robust, scalable, and adaptable (Byrd et al. 
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2000; Duncan 1995; Kayworth et al. 2001; Weill et al. 1998). It should support the reuse of business components 

within a firm, while supporting firm responsiveness, innovativeness, and economies of scope (Kayworth et al. 

2001).  

Architecture implementation involves learning effects. As researchers have explored organizations making 

changes to architecture, they have identified two strategies: localized exploitation or enterprise-wide integration 

(Allen et al. 1991). In addition, they have identified that changes do not occur in one step; they occur in stages (Ross 

2003). 

Architecture reflects and supports business strategy. Architecture is not just concerned with the allocation of 

resources at the physical level, but also the support of strategic business goals. The architectural challenge is not just 

cost minimization in the allocation of task to computational device, but the alignment of the task structure (Gasser 

1986), supported by the information system, with the business objectives of the organization.  

Zachman expands the concept of information system architecture to include the various perspectives taken during 

its design and implementation (Zachman 1987).  Iyer and Gottlieb (Iyer et al. 2004) identified three views through 

which we can examine architecture. The first view - the espoused - is the outcome of designing the planned 

dependencies between system modules and is the province of the IS Architect (although there may be many 

stakeholders). The second view - the emergent - is the outcome of implementing individual projects. It is a 

descriptive view of the actual dependencies that exist amongst system modules. The third view - the in-use - 

highlights the dependencies between and among system components and organizational groups that arise from the 

business of doing the work of the enterprise – selling products, buying supplies, managing employees, etc - as 

employees, suppliers, and other stakeholders interact with the system. 

Organizations with information systems can evaluate projects with the intent to understand how the project will 

impact the emergent architecture, or they can evaluate projects without this architectural perspective (Alexander 

1964). An organization can develop an architecture, implement it according to plan, and then have a series of 

subsequent IT projects that, in response to specific or general business requirements, modify it. Iyer and Gottlieb 

(2004) argue that the way architecture emerges may subsequently impact how well the firm can achieve IT/business 

strategy alignment as well as the goals of flexibility, reliability, robustness, scalability, adaptability, and reusability. 
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Architecture as social system  
The architectures developed by the organization reflects its composite IS strategy. The espoused architecture 

represents the codified understanding of what the organization requires, subject to technological and organizational 

limits. The implementation of the architecture enables certain organizational capabilities, and constrains other 

capabilities. The tasks that are allocated to specific computers represent the actions and responsibilities of specific 

users. The allocation of tasks to systems, thus, mirrors existing dependencies between groups, and creates new 

dependencies between them (Leifer 1988; Tillquist et al. 2002). As the architecture changes – emerges – over time, 

so do the dependencies between the systems. 

The emergent information system reflects the interdependencies between the tasks and groups and serves as an 

integration mechanism (Lawrence et al. 1967) between groups differentiated to manage complexity (Boland et al. 

1995; Simon 2003). The existence of certain information conduits implemented in the IS system influences 

communication and routines (Nelson et al. 1982) between the groups both syntactically and semantically (Argyres 

1995). The evolution of the information system also reflects different power relationships and conflicts between 

stakeholders (Kling 1980). 

The information system reflects the debate between organizational elements (Akrich 1992; Barley 1986; 

DeSanctis et al. 1994; Pinch et al. 1987). The system both shapes the debate by shaping information conduits and 

manipulating dependencies, and is shaped by the debate as groups implement IT projects. IS architects enter the 

debate initially by influencing the espoused architecture, and subsequently through the evaluation of, and influence 

over, subsequent IT projects.  

At its core, architecture influences the design decisions and the investment behavior of an organization. When 

viewed from this perspective, dependencies within an architecture act as conduits through which ideas, norms, and 

meaning flow. IS architects influence both the emergent architecture and the host organization through IT project 

guidelines. Due to the limited resources available to the architects, the selection of which parts of the architecture 

they pay attention to may be of significant importance to the eventual shape of the network, and their ability to 

influence the systems within it and the groups that use it.  

IT project cost and success, and system flexibility, robustness, adaptability, and performance are the result of an 

interaction between system and organization that system architecture influences (Leifer 1988). Project cost and 

maintenance is directly related to complexity (Banker et al. 1993), which is a description of interdependency. 
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We utilize network analysis concepts to examine dependencies between software components and illustrate how 

changes in emergent architecture lead to changes in IS architects’ ability to influence organizational behavior, affect 

IT project cost, and improve IS characteristics. Network analysis can help us understand the emergent architecture 

and the shifting influence of components within it, and the implications for architectural control. 

Architecture as emergent 
Our focus in this research is the emergent architecture because we are interested in how ongoing changes within 

the system affect the scope of managerial choice. The emergent architecture is the actual allocation of computational 

tasks to computational platforms that results from the original design (espoused view) realized and modified through 

IT implementation projects as the system and organization adapt to each other (Leifer 1988; Orlikowski 1992; 

Orlikowski 2000).  
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Figure 1: Framework for Enterprise Architecture
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The gap between the espoused and emergent architectures is created the moment developers, in an attempt to 

implement the espoused architecture, make decisions that were not specified in the espoused architectural 

documents. As users adjust the system through one-off integrations, modifications, and additions, and as subsequent 

projects modify the information system, the gap between the espoused and emergent architecture may grow. The 

gap can be narrowed through proactive enforcement or modification of the espoused architecture.  However, in 

large-scale systems, this is a time consuming job that often lags behind the “grounded reality” of the organization 

and, hence, is hardly ever done.  

Given this reality and limited organizational resources, it is important to identify a subset of systems that the 

organization can choose to control. A system can be deemed important for two reasons. It can be intrinsically 
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important because of its attributes or the stand-alone value it provides to the firm. We call this autarky value. For 

example, an accounting system may be valuable because it may hold specific data, perform critical tasks, represent 

large investments, or have large numbers of users. A system can also be deemed important because of its position in 

a larger network of interdependent systems. Positionally important systems derive their status because they influence 

the emergence of the architecture, the ideas that flow through it, and the dependencies it creates and reflects. Having 

control of these systems allows decision makers to influence the evolution of the architecture to support the business 

goals of the enterprise. We call these systems architectural control points (ACPs). It is important to note that the 

ACPs and intrinsically important systems are not necessarily the same. 

To describe and understand emergent architecture, we adopt modularity theory (Baldwin et al. 2000; Schilling 

2000; Simon 2003). Modularity theory enables us to view an architecture as an interconnected set of modules. 

Baldwin and Clark (Baldwin et al. 2000) have also provided a set of operators to describe changes that can be made 

to an architecture (described later). ACPs are modules that can be used by a stakeholder to manage the flow of 

information between connected components of a modular system. An ACP can, in effect, become a gateway or 

bottleneck through which information flows. 

Network Analysis 
Network analysis has been utilized in a great many areas to describe many complex phenomena (Barabasi 2002). 

Software researchers have used metrics (Chidamber et al. 1998) to assess the structural properties of software and 

have measured complexity using techniques such as DSM (MacCormack et al. 2005). We are introducing the 

concepts of network analysis into the examination of architecture because network analysis enables us to model the 

interrelationships between components and treat those relationships as first-class units of observation.  

If we assume that the architects cannot control all the components of the information system, then the question 

the architect wants answered is which components should be controlled, or more actively managed. That is, what are 

the architectural control points? Similarly, how does the espoused architecture influence subsequent emergence and 

control points? Are there architectures and simple rules that minimize the change in control points? The control 

points may be identified according to a specific set of criteria, or they may be identified by their network position 

within the espoused architecture.  

One of the characteristics of network analysis is that complex phenomena are abstracted to a simple 

representation of nodes and links. In our abstraction, nodes represent software components and links represent 
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dependencies. Within this abstraction, we utilize a single node type and a single edge (link) type. The emphasis is on 

the relationship between nodes and not on specific business functions, APIs, or tasks.  

Systems 
In this paper a component is an executable software application with a well-defined and published interface. As 

such, it may be used by other programs without the user being aware of its implementation details. It is separately 

buildable, installable, and manageable. That is, it must be possible to compile, link, and ship the application 

independently of the other applications in the information system.  

An application that consists of multiple modules that must all be present to have a functioning system (e.g., a 

database management system) is considered a single component. Similarly, multiple copies of the same application 

are a single component. For an application module to be considered a separate component it must be possible to 

procure that module from different vendors or develop it independently within a firm.  

Dependencies 
One of the most important tasks in network analysis is defining what constitutes a link. The links between nodes 

represent conduits through which information, ideas, and knowledge flows. Within information systems, the most 

obvious links between systems are those in which two systems exchange data. In this model, two nodes are linked if 

they share data. As a dependency, we would say that system A depends on system B for data. However, by drawing 

on the coordination literature (Malone et al. 1994) and organizational research on interdependence (Thompson 

1967), we understand that there are multiple types of dependencies by which we could characterize the tasks 

represented by systems: resource sharing, producer/consumer, and simultaneity.  

A resource dependency exists when system A depends on data managed by system B. For example, applications 

that share a common Oracle database have a dependency on the shared data resource managed by Oracle. The 

database management system (DBMS) has many facilities to manage the dependency on this shared resource. A 

producer/consumer dependency exists when system A depends upon the results of system B. For example, a general 

ledger application depends upon the data processed in a sales order application. A simultaneity dependency exists 

when two or more tasks must be completed before a third task can begin. For example, a reporting application may 

need data from multiple systems before compiling the report. 

Dependencies are both direct and indirect. The implication of direct and indirect dependency in the context of 

nearly decomposable systems (Simon 2003) is that the influence of one component of the information system on 
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another decreases as the distance between the two components increases. In network terms, the influence of one 

component upon another component decreases as the number of links separating them increases.  

The influence a component exerts on the rest of the system is a function of the number of direct links the 

component has to the other components, and the indirect links between the component and all others. This measure, 

in the network literature, can be described through influence centrality (Hubbell 1965; Katz 1953). 

System developers implementing changes to the information system must confront these dependencies when 

modifying the system. To modify an existing component, the dependencies between the component and its direct 

dependents must be negotiated. If we make the simplifying assumption that the maximum number of dependencies 

between any two components is two (bidirectional), and we ignore indirect dependencies, then modifying a 

component connected to N-1 other components requires a maximum of N*(N-1) negotiations. This includes the 

negotiations between the target component and its directly connected components, plus the negotiations among 

those components.  

Adding a new component to the network involves the negotiation of two dependencies: the dependency of the 

new component on its point of connection to the network, and the point of connection’s dependency on the new 

component. By accepting the connection, the point of connection’s freedom for subsequent change has been 

restricted to the extent it will need to negotiate change with the new component. Adding a new component to the 

network also shifts the relative importance of existing components within the network. 

Integration between two existing component increases the number of dependencies on each component by one. It 

also increases the number of indirect dependencies between components and may shorten the shortest path between 

pairs of components. As links are added to the network, the balance of influence among components may change.  

An architect interested in managing the evolution of the network, its impact on the organization, and the 

organization’s impact on the system may be interested in how these modifications to the network affect certain 

network characteristics. In our research, we are interested in the shape of the network (the pattern of nodes and 

links) predicting overall system characteristics and the success of adding components or modifying existing 

components within the network. Before we can examine the implications of network change on network 

characteristics, we need a more formal mechanism to describe changes to the network. 
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Design Moves 
To describe and understand emergent architecture, we adopt advances in modularity theory (Baldwin et al. 2000; 

Schilling 2000). Modularity is a state descriptor of a firm’s architecture, which influences the potential moves or 

changes that can be made to it. These moves can be described by a set of modular operators.  

To the list of modular operators identified by Baldwin and Clark - splitting, substituting, augmenting, excluding, 

inverting and porting - we add linking. The linking operator connects two previously unconnected modules. In 

developing information systems, a key consideration is using the outputs of one system as inputs into another. This 

linking can be between two systems that run on the same operating system or between systems that run on two 

different operating systems. For example, a data mining application that draws on a new data source can be seen as 

linking to that data source. 

Within our network, we can further abstract the operator set to: modifying a node and its adjacent links, adding a 

node and a link, and adding a link. We are uninterested (at this point) in why a node is modified (thus collapsing 

substitution, splitting, and inversion); we are uninterested in disconnected networks (thus, we ignore augmentation 

without a link); and, we do not envision systems decreasing in complexity (thus, we ignore exclusion). 

Simulation 
In this section we summarize the simulation that we executed in a previous paper. To understand the relationship 

between network emergence and the change in the architectural control points in systems in which no single 

authority controls all the projects, we simulate the emergence of an information architecture. To increase our insight 

into emergence, we test these propositions: 

Proposition 1: Emerging architectures result in reduced control of key nodes. 

Proposition 2: Architectural thinking reduces the decline in control of key nodes. 

Proposition 3: Preferred network topologies such as small worlds are preserved with architectural thinking. 

As in any simulation, our models are abstractions. We make the following simplifications and assumptions: all 

dependencies between nodes are of a single type, organizations react to changes in the competitive environment by 

making changes to the architecture, and only three types of changes are allowed. Finally, we assume that all nodes 

have the same intrinsic or autarky value. 

The simulations are run under two sets of rules with two different starting conditions. In the first set of rules, the 

position of the node in the network is ignored when evaluating the probability of an operation being permitted (i.e., 
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no architectural thinking). In the second set of rules, the probability of an operation being permitted on a node is 

proportional to the normalized degree centrality of the node (the probability is d/N, where d is the number of links 

adjacent to the node, and N is the total number of nodes in the network). We characterize the use of degree centrality 

by an organization as evidence for the presence of architectural thinking – resource sharing. In fact, sharing 

resources is considered a key dimension for evaluating the presence of architecture within firms (Kayworth et al. 

2001). 

The two starting conditions are the shape of the espoused network (see Figure 2): in one set of simulations, the 

simulation starts with a random network, in the other it starts with a small world network. These two starting 

conditions are created to represent unplanned and planned architectural starting conditions, respectively. When we 

have a small world starting condition, we assume that the firm has created domains of services or systems (say 

customer related or product related) that are highly connected with one another and loosely connected with other 

domains of systems. This style of architectural thinking is prevalent today in service oriented architectures (SOA) in 

general and Web Services in particular.  

 
Figure 2: Networks before emergence. The random network is on the left; the Small World network is on the right. 

 

Both networks start with 48 nodes and a density of 0.20 (20% of all possible ties among nodes exist in the 

networks). The networks are constructed to have the same node count to facilitate subsequent analysis.  

Network evolution follows the following logic. The simulation is run until 100 operations are performed on the 

network. Three types of project are possible – Linking, Augmenting, and Splitting – with the probability of project 

implementation set at 50%, 30%, and 20% respectively. At each clock tick IT projects are proposed until one is 

accepted. Linking projects integrate two randomly selected components (nodes) by linking them with a bi-directional 
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edge. Augmenting projects create a new component (node) and link it to a randomly selected existing component. 

Splitting projects re-architect a single component into two components. When the existing component is split, the 

existing integrations (links) are randomly distributed between the old and new components (nodes).  

When a linking project is proposed, and the probability of approval is architecturally informed, the probability of 

approval is (d1+d2)/N, where d1 and d2 are the cardinality of edges adjacent to randomly selected nodes 1 and 2 

respectively, and N is the total number of nodes in the network. When an augmentation project is proposed and the 

probability of approval is architecturally informed, the probability of approval is d/N, where d is the cardinality of 

edges adjacent to a randomly selected target node. When the splitting project is proposed, it is rejected out-of-hand 

if there isn’t more than two links adjacent to the randomly selected node. If this test is passed, the probability of 

approval is d/N.  

Dependent variables 
Broadly speaking, we are interested in two characteristics of the emergent architecture. First, how well the 

initially selected set of ACP’s influence is preserved. Second, how well the initial design pattern (network topology) 

is preserved.  

We measure preservation of influence by comparing the fitness of the initially selected ACPs before and after the 

simulation run. In this case, fitness is a measure of how efficiently the ACPs reach the other nodes in the network. 

The measure of design preservation is captured by comparing the starting and ending networks’ Small World 

Quotients (Uzzi et al. 2005). For each simulation, a number of standard measures such as network density and node 

counts are collected. Measures specific to this simulation included the KeyPlayer metric KPP-POS (Borgatti 2003; 

Borgatti et al. 2005), used to measure the fitness of a set of ACPs (described below), and the Small World Quotient. 

We computed the difference between two networks using the Hamming distance.  

In the simulation, ACPs are those components that collectively have the shortest path lengths (geodesics) to all 

other components. We assume that one component’s influence on another component is proportional to the 

reciprocal distance to that other node. We assume that IT managers will want to minimize the distance between the 

nodes they manage intensively and all other nodes. In terms of this simulation, we want to find the ACP set that 

maximizes the sum of reciprocal distances. To select the ACPs, and measure the influence of the selection on the 

other nodes in the network, we make the simplifying assumption that influence in the network travels along shortest 
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paths and then utilize KeyPlayer metric KPP-POS (Borgatti 2003), which provides a fitness measure that reflects 

cumulative lengths of the short paths between the ACPs and the rest of the network. 

At the beginning of each simulation run, we determine the ACPs of the network assuming we could select 3, 4, 5, 

or 6 components from the network for the ACP set. The fitness measure at the beginning of the run is the starting 

fitness measure. At the end of the run we calculate the ending fitness of the starting ACP set. The difference 

between the starting fitness and the ending fitness represents the loss of architectural control. We also calculate the 

best fitness that could be obtained with a new set of ACP components and the overlap between the ACP set that 

represents the best fitness and the original ACP set. All measures are normalized by dividing them by the number of 

components in the network. 

Summary of results1 

The greatest change in the network structure occurred in the random network. The small world network, which 

appears more modular, is less different after 100 operations than the random network. This suggests that the 

espoused design is not completely lost through the emergence process.  

In all cases, the best ACPs after emergence have a lower fitness than the starting fitness because components 

don’t just attach to the ACP components. In addition, the best ACPs after emergence are different from the originals; 

IS Architects could improve their influence over the network by changing their ACPs.  

It does appear that the imposition of architectural rules has a significant impact on the fitness of the architectural 

control points. Architectural evolution that decreases network density decreases the fitness of the control points. A 

subsequent regression used to perform a sensitivity analysis on the results shows that the architectural rules’ impact 

on density, rather than the initial network design, is a significant predictor of ending fitness.  

To better evaluate the causes of the deterioration in fitness after evolution, we ran two simple regressions. In the 

first one, we regressed ACP Overlap on two categoricals - whether or not the initial network was a Small World and 

whether or not the probability of project acceptance was weighted by a node’s degree centrality – plus the initial size 

of the ACP set. The results (not shown) show that the only significant predictor of ACP Overlap is the size of the 

ACP set, which explains only 4.5% of the variance. 

The second regression regressed the fitness difference on the same two categoricals plus the size of the ACP set. 

The results show that the weighting of project acceptance explains 32% of the variance in ACP fitness. Systems that 

                                                           
1 The results of the simulation are presented in detail elsewhere. We highlight the findings here. 
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grow primarily in the number of links seem to have a smaller impact on the importance of the ACPs than systems 

that grow through the addition of nodes. The higher linking preference can also be interpreted as a reuse preference, 

which then suggests that systems that give a preference to reuse do a better job of preserving the initial ACPs. 

A second important finding is that the small world network (the service oriented design) is only robust if 

architectural thinking guides its emergence. The continuous arrival of new components tends to create a core-

periphery structure in which a dense center of interconnected systems is surrounded by one-off systems. Although 

these emerged systems all have a high small world quotient, none of them have a clear design pattern. The systems 

that started with a small world structure and emerged through a process guided by architectural thinking remained 

closest to the service oriented design they started with. 

FinServ Case Study 
To demonstrate modeling fidelity and to use the model to construct and evaluate meaningful change management 

strategies or policies, we present a case study.  We use the case study to modify our simulation model and to test if 

the results are still valid. The case study was used to determine the types of changes that can be made (design 

moves), the logic used to make architectural decisions, and the number of nodes an architectural group can control. 

These factors were then incorporated into the original simulation model to create the new simulation model. 

FinServ is an organization that provides processing services to the investment management industry. In addition 

to our own primary data collection, we used details listed in (Westerman et al. 2005) to inform our case study. 

FinServ has over a trillion dollars in assets under management. They provide full service transfer agency and 

accounting services globally.  

Over the last couple of decades, FinServ has grown rapidly primarily through mergers and acquisitions, and also 

by launching new services and entering new regions. As companies were acquired, each line-of-business (LOB) 

maintained much of the decision rights to control most aspects of their (line-of) business, including design, sales, 

back-end processing and IT services. The resulting enterprise architecture has duplication of functionality, limited 

integration, and a wide variety of user interfaces. Each LOB was empowered to focus on, and independently respond 

to, specific opportunities and needs. 

The FinServ architecture had several characteristics that prevented FinServ from quickly responding to changing 

market conditions. These characteristics included tight coupling between systems, monolithic solutions (often not 
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well documented), and the duplication of functionality (as noted above). This was sustainable during the economic 

growth phase of the 90’s. 

In response to this predicament, FinServ hired a new CIO and created a new corporate initiative to address the 

problems. The IT organization was changed, creating an enterprise architecture team, a management oversight 

committee, and an organization to provide company-wide shared application services. A FinServ enterprise 

architecture strategy was created and a Global Platform, SOA-based, enterprise architecture was defined. Their core 

mandate was to reduce IT spending though the elimination of redundant systems, componentization and exposure of 

core functionality through accessible services, redesign of strategic shared applications and components and the 

provision of mutually consistent customer access channels (web, voice, wireless, etc.). This organization invests in a 

strong enterprise architecture organization and actively practices architecture-driven application development with 

accompanying architecture governance via an Architecture Review Board. This involves investing in technology, 

processes, people, and organizational structures that can help them deliver on their mandate.  

Type of moves 
Our first sets of interviews were meant to validate the design moves that we used in the old simulation model. 

The chief architect of FinServ, who has played that role for the last five years, identified the following operations 

that a project could implement. 

1. Linking. Adding an integration between two existing systems to support new functionality. An example 

of this is the creation of a new report that requires access to previously un-accessed data. 

2. Augmentation. Adding a new system because a line of business (LOB) has a new requirement. A 

FinServ example is the need to maintain a Sarbanes-Oxley requirement. The new project involves the 

building or buying of a new application and the creation of integration points with existing systems. 

3. Splitting. Re-architecting an existing system. As a result of multiple integrations the functionality of the 

system increases beyond its original scope. It becomes too complex to support the diversity of 

integrations. At some point, the designers re-architect the system so that its components can evolve 

semi-independently. In practice, this situation seems to occur in at least three variations. In some cases a 

system (e.g., at FinServ, legacy mainframe systems) is enhanced over time to a point where further 

enhancement becomes increasingly difficult due to the interdependencies between functions. In a second 

set of cases, the re-architecting occurs because the company acquires another company with similar 
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functionality, and the similar applications need to be rationalized. To merge the distinct functions and 

eliminate the duplicates, the original system may need to be split into constituent pieces. In a third set of 

cases, systems are cloned because the original system (e.g., a front-end system) is application specific 

(e.g., to a particular backend-system), yet its general functionality is desired across multiple 

applications. Cloning a system and then modifying it to support a new purpose may be quick in the 

short-run, but it doesn’t scale and it does impose long-term maintenance costs. The collection of the set 

of clones can be considered a single system (until each clone diverges beyond recognition) that can be 

re-architected into a single, flexible system in which the general functionality is maintained once, and 

application specific functions are isolated.  

4. Enhancements. Change an existing application (i.e., component or system) without creating new 

integrations. These projects generally extend the functionality of the existing application to meet new 

business needs or modify the application because an underlying system (e.g., Oracle) is upgraded. 

Systems and applications are sometimes retired and taken out of service. Generally, this happens in conjunction 

with the augmentation and re-architecting of existing applications and is properly accounted for in the splitting 

operation described above. In other cases, the retired system is replaced by another system but the general pattern of 

integrations between systems – the sharing of data between systems – is unchanged. In yet other cases, the retired 

system is eliminated because the supported business function is no longer performed, or the client no longer exists. 

This function is outside the scope of the simulation. 

At FinServ, the rough breakdown of projects by resources used is: 25% for linking, 25% for augmentation, 10% 

for splitting, and 40% for enhancements. In our simulation, we ignore enhancements because they do not change the 

enterprise architecture. However, to the extent that the architecture affects the cost and effectiveness of subsequent 

enhancements, it is significant that 40% of the firm’s resources go towards enhancements. Scaling the remaining 

60% of the resources that affect the enterprise architecture to 100%, the breakdown of operations is: 42% linking, 

42% augmentation, and 16% splitting. We use this calibration for our FinServ-based simulation model. 

Decision logic for architecture 
In our first simulation model, we adopted one of two types of decision logic that influence project acceptance. 

Firms either execute projects without regard to the long-term impact of the project on system architecture or they 

evaluate projects on both the short-term business objectives and the long-term architectural impact. The choice of 
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decision logic is influenced both by the costs of engaging architects for evaluation and the history and experience of 

the business leadership.  

At FinServ some of the leadership recognizes the importance of architectural thinking. Other elements of the 

leadership are focused on short-term objectives and the need to meet the immediate concerns of customers. Finally, 

the formative experiences of some of the leadership were of a time and place where applications were far less 

integrated. If the applications are isolated, thinking of them as such is perfectly appropriate. Problems only seem to 

exist when the leadership’s mental map diverges from practice. 

We recognize that firms execute both types of project evaluation logic. However, to illustrate the impact of these 

two views presented above, we run one simulation under the assumption that architecture is not considered during 

project evaluation and we run another simulation when architecture is considered during project evaluation. 

Isolated view. In this logic, each project is evaluated on its own merit without regard to the impact on other 

systems or the evolution of the overall information system. The integrations between applications either supply 

valuable data or support important stakeholders. However, because the specific integrations do not affect project 

authorization, we assume that the integrations required for a project are statistically random. 

Architectural view. In this logic, each project is evaluated both on its own merit and on its impact on the future 

architecture of the information system. In particular, projects that link systems that are designed or intended for re-

use are given preference. By itself, this leads to systems in which the highly connected nodes become more highly 

connected. However, some new systems are designated as preferred systems to link to before becoming highly 

linked. This can occur because either the architects build or buy systems for that purpose (e.g., enterprise system bus 

components, data warehouses, or data marts) or acquire a new system (e.g., applications that exist in an acquired 

company that are to be retained) that must be integrated into existing systems. 

In our new simulation, we incorporate this logic by making the probability of a link (integration) existing 

between any to nodes (systems) a function of the degree centrality (number of integrations supported by a system) of 

each node. To represent the idea that some systems are to be given a higher preference for integration, even if they 

currently have few integrations, we randomly assign a few systems (as they enter the enterprise architecture) the 

property that projects that contain a proposal to link to them are always approved. 
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Architectural control 
A key assumption in this paper is that architects cannot actively manage all the systems in an enterprise. They, 

therefore, select a few and let the decentralized LOB managers handle the rest. Within FinServ there are about 150 

IT projects per year, of which the architecture team has some visibility into 20%. The number of projects that the 

architects get actively involved with is limited by their staffing level to 8. 

Architects select the systems they monitor based upon what they think is important. Another key assumption in 

this paper is that certain systems are valuable not because of their data or functionality, but because of their position 

in the network of systems within the enterprise.  

This assumption is borne out by the following example. FinServ has three mainframe systems that feed data into 

a data warehouse. As the data are fed into the warehouse they are transformed. This leads to data quality issues due 

to conversion, completeness, and timeliness problems. The warehouse also feeds data to a data mart to provide 

efficient reporting to a fourth tier of applications. The transfer from the warehouse to the data mart also involves 

data transformation and quality issues. Because the warehouse data is suspect, the data mart data is also suspect. 

Moreover, there aren’t enough data marts. As a result, there is pressure from the LOB managers that use the DSS 

applications to bypass the data marts and warehouses and go directly to the mainframe data sources. However, this 

would severely strain the mainframes and would limit subsequent modification of the mainframe applications 

because of the constraints imposed by dependent systems. 

The warehouse has some autarky value due to its data processing and transforming capabilities, but its more 

significant value is in its position between the mainframe applications and downstream data consumers. By focusing 

on this positionally important system (i.e., the data warehouse) the architects can better preserve the architecture of 

the entire information system. It is also by controlling the data definitions in the warehouse that the architects can 

influence how the data is interpreted in downstream applications. 

Based on the above description of the FinServ, we have made changes to our original simulation model to include 

the new logic for architecture. As shown in Figure 1, FinServ’s systems are not isolated: FinServ has 158 

interconnected systems (nodes) in their enterprise architecture (network). It has a few highly integrated systems and 

many sparsely integrated systems. To account for the larger starting size (158 nodes) we increased the number of 

nodes added during the simulation to 320, thus maintaining the ratio of new nodes to original nodes used in the 

earlier simulation. 
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Figure 1. FinServ enterprise architecture (main component). 158 nodes. 

1.  

 

Decision logic 

2.  

Probability new system 
 marked special 

3.  

 

Delta Original Fit 

4.  

 

Delta New Fit 

Isolated 
view N/A -0.30 -0.24 

0 -0.34 -0.23 

20 -0.34 -0.27 

40 -0.32 -0.28 

60 -0.33 -0.29 

80 -0.33 -0.28 

Architectural 
view 

100 -0.33 -0.29 

Table 1: Simulation results. N = 10 for each starting condition. 320 projects implemented 
on 158 node enterprise architecture. Average values displayed. 

The simulation suggests that growth in the enterprise architecture results in a decrease of control for the original 

control points (column 3). The decrease in control of the original control points is worse if architectural 

considerations are taken into account in approving projects, but a new set of control points (column 4) can minimize 

the loss of control when architectural considerations are taken into account. This conundrum is explained by noting 

that without architectural control, the original positionally important nodes retain their position because no other 

node become more positionally important; in addition, no alternate set of control points produces particularly good 

control. By contrast, when architectural considerations are taken into account, the old control points lose their 
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importance because other important control points have emerged. In a set of regression studies we found the 

difference in control due to the decision logic used to be statistically significant. 

Seemingly random incorporation of new important nodes into a system (column 2) reduces the ability of 

architects to maintain control. The degradation of control applies to both the original set of control points and any 

alternate set of control points. In a set of regression studies we found that the level of control a set of control points 

offers is predicted by the number of control points employed and is inversely predicted by the number of seemingly 

random incorporated systems designated as important. 

In a set of regression studies (not shown) we found that the number of control points is positively correlated (and 

statistically significant) with both the loss of control for the original control points and the gain of control when a 

new set of control points is adopted. In effect, architects that pay attention to only a few systems do not experience 

as much of a loss of control as those that pay attention to more systems because their absolute level of control is 

lower. Architects that pay attention to more systems also need to be willing to change the systems they monitor to 

maintain control. 

The biggest challenges that FinServ’s architects have, however, is not within their technical domain. Instead, the 

problem is explaining to senior managers why IT is expensive, why failing to invest in architecture will become 

increasingly expensive, and why outsourcing the support and provision of applications does not address the failure 

to invest in architecture. Outsourcing may affect where the application resides and who is responsible for its 

maintenance, but it does not affect the integration of that outsourced system with the other enterprise systems that 

either feed or require data. 

It is only by staying on top of the applications that drive the number of, and complexity of, the integrations 

between systems that FinServ can manage the cost, flexibility, and risks in their evolving enterprise architecture. 

The simulation emphasizes the emergent nature of the enterprise architecture and the need to adjust the firm’s 

resources in response to changes in the architecture. As the case at FinServ highlights, the challenges are not strictly 

technical. The biggest challenges are communicating the nature of the information system, gaining the necessary 

resources, and identifying risks. 

Systems with high positional value may be important because they influence many other systems. They can also 

be important because they are outside the firm’s control. At FinServ, this point is illustrated with two examples. 

Some of the systems with high positional value are 3rd party applications. This makes FinServ dependent on another 
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company’s system. At least one key system was developed twenty-plus years ago by two consultants now in their 

sixties that are still responsible for its maintenance. The system is undocumented. In both of these cases FinServ has 

positionally important nodes effectively outside of its control. When these systems were either stand-alone systems, 

or used by only one other application, the risks associated with these systems may have been low. However, as these 

systems became more embedded through direct and indirect integrations, their positional importance and associated 

risks increased. 

Conclusions, limitations and future work 
According to the chief architect at FinServ, the network visualization and associated simulation is “a powerful 

communication tool to gain the support of people to do the right thing.” The big issue is being able to visualize what 

is happening to the architecture and then being able to show others without “wading through reams of spreadsheet 

data.” “Communications with decision makers and stakeholders at a senior level is notoriously difficult. They live in 

an old world where things were not complicated.” The decision makers take an attitude that, “IT is difficult. So, I 

will buy it from outside. There is still very much the silo model.” 

From FinServ’s perspective, the simulation would serve them better if it were further calibrated with specific 

project costs and system performance metrics to better illuminate the effect of architectural control on cost, system 

stability, and system efficiencies. As the chief architect stated, “Everyone wants to reinvent the wheel. We need 

metrics for the cost of adding systems, transforming data, and moving data.” 

This simulation highlights the effect of system evolution on the changing importance of positionally important 

systems. Adhering to a preference for system reusability can limit the speed with which list of important systems 

changes, but it can’t halt change.  

Subsequent simulations and empirical examinations can tie system evolution and architectural guidance to 

specific business and IS outcomes. We anticipate showing that the question asked of the FinServ architect – “When 

will the architecture be done” – is the wrong question. The architecture is done when the business is closed. 

Architecting is a process that maintains some level of control over the architecture and produces better outcomes for 

the organization than would occur in its absence. 

In this research we asked the question, can we meaningfully represent the complexity of information system 

architecture in network terms, and then capture value from such representation? Our approach was to represent the 
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components of the architecture as nodes, and the dependencies between the components as links or arcs. The answer 

seems to be, “Yes.” 

We focus our attention on the emergent view of architecture. The emergent view is appealing because it reflects 

past inter-organizational interdependencies and influences future ones. Certain nodes occupy key positions in a 

network and, more importantly, confer unique decision rights to owners of those nodes. We call such nodes 

architectural control points (ACPs). These ACPs, however, are moving targets and are not necessarily known a 

priori or under the control of the CIO or architect. 

As the architecture evolves, the ACPs change. In organizations in which power and influence is multi-polar and 

decision making is distributed, the influential systems may also change. In a system of emergent interdependencies 

the systems identified as core by one set of managers, at one point in time, may not be identified as the most 

important by either the original set of managers or other groups of stakeholders at another point in time. That is, the 

loci of interdependence may shift over time. 

In addition, a failure to control the control points may result in a socio-technological system that evolves in a way 

inconsistent with the business strategy. Moreover, the system’s evolution may make subsequent changes more costly 

to implement and result in a system that is more error prone. 

These changes to the ACPs are important to understand. Architecture impacts the flexibility, stability, and 

performance of information systems and ability to align the system goals with a firm’s business strategy. Emergence 

causes the underlying architecture to change and impacts the cost, timeliness, and success of subsequent software 

projects. 

Our simulations confirm three propositions regarding the emergent nature of information systems. First, network 

growth results in a deterioration of the network influence offered by an initial set of control points. Second, 

architectural thinking in the form of rules that guides emergence can reduce the degradation of influence. Third, 

preferred designs are best maintained through architecturally informed rules that guide emergence. 

While we developed the paper based on an information systems context, we can generalize the thinking to the 

development of physical products, information products, inter-organizational networks, social networks or even 

networks of services. A critical step before we can claim generalizability is to demonstrate that network abstractions 

utilizing nodes and links of information systems, product architectures, organizational architectures, and inter-

market architectures have predictive value.  

 Twenty Seventh International Conference on Information Systems, Milwaukee 2006 21 



Design Science 

For the behavioral part of the simulation we used design operators. These design operators are at a high level of 

abstraction and can be applied to both physical and informational goods. Their arrival rates and semantics can be 

customized to suit particular phenomenon under study.  

Similarly, within the literature researchers have identified architecture in design, production and use. In this 

paper, we used ACPs identified in the design stage to track changes in the production stage. While we showed that 

architecture control points change when we go from design to production, we can also test to see if the same result  
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